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Human-Robot Interaction in Concept Acquisition:
a computational model
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Abstract—This paper presents a discussion and simulation re-
sults which support the case for interaction during the acquisition
of conceptual knowledge. Taking a developmental perspective, we
first review a number of relevant insights on word-meaning acqui-
sition in young children and specifically focus on concept learning
supported by linguistic input. We present a computational model
implementing a number of acquisition strategies, which enable
a learning agent to actively steer the learning process. This is
contrasted to a one way learning method, where the learner does
not actively influence the learning experience. We present results
demonstrating how dyadic interaction between a teacher and
learner may result in a better acquisition of concepts.

Index Terms—concept acquisition, human-robot interaction,
language games, learning interaction

I. INTRODUCTION

ARTIFICIAL systems that interact with humans typically
need semantic knowledge. Only very simple (behaviour-

based) systems can display a repertoire of interactive be-
haviours which do not rely on knowledge. However, for all
other tasks, such as reasoning, learning and most importantly-
linguistic interaction, the artificial system will need internal
representations. These representations can be implicit in the
system, for example in the weights and states of a neural
network, but when they are explicitly present in the system
they are typically pre-programmed. In natural language pro-
cessing systems for example, the semantic interpretation of
a word is a well-defined script of actions programmed by a
skilled human programmer. The premise of the proposed study
is that semantic knowledge can be acquired autonomously by
artificial agents and, more importantly, that language plays a
crucial role in this.

Relevant to this is that young children, in addition to
learning directly from sensory exploration, rely on linguistic
labels to acquire the meaning of words (for an overview
of early language acquisition see [1]). Xu [2], for example,
demonstrates how linguistic labels help 9-month old infants
to establish a representation for different objects; learning
without linguistic labels, or with the presence of tones, sounds
or emotional expressions is not effective. This implies that
language is crucial in acquiring novel concepts from a very
early age on. Plunket et al. [3] come to the same conclusion
in a tightly controlled experiment where they demonstrate
how category formation in 10-month old infants is influenced
by linguistic labels. Linguistic labels also have an effect on
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category learning in adults; adults who learn a new category
did so significantly faster and showed more robust category
recall when the learning experience was accompanied by
novel linguistic labels [4], [5]. Aforementioned studies show
that linguistic labels facilitate category acquisition, both in
pre-linguistic infants and adults. These insights tie in with
linguistic relativism, which states that language and cognition
influence each other. Recently, linguistic relativism gained
renewed attention as a series of psychological experiments
demonstrated how perception of stimuli and use of categories
is influenced by the words we know; this has been notably
demonstrated for categories of time, colour and space e.g. [6]–
[8].

Central to this paper is the insight that concepts are shaped
by language. The concept of CHAIR is of course related to
the visual and tactile perception of a chair and its function, but
delimiting CHAIR and distinguishing it from other concepts,
such as TABLE, STOOL or RACK, can only come about
through naming all objects that belong to CHAIR as “chair”
and consequently, by naming all objects that do not belong to
CHAIR something else. This might seem trivial, but linguistic
labels, as mentioned above, play a crucial role in concept
acquisition in children and adults. Linguistic labels might be
thought of as facilitating supervised learning of unknown cat-
egories, this view however is too limited. Learning categories
through language allows for more complex learning interac-
tions than one-way supervised learning (such as contrastive
learning or validating the learnt word-category pairs through
querying the teacher). It also involves different teachers,
allowing access to different hypotheses. The role of linguistic
labels in category acquisition is perhaps still seen as a form
of supervised learning. Indeed, the experimental paradigms of
developmental psychologists constrain the experiments so that
visual stimuli and linguistic labels are presented as pairs to
infants, while neglecting interaction [2], [3]. However, it has
been suggested that language acquisition is a process which,
in addition to learning mechanisms, relies on social-cognitive
skills and multi-level interaction with peers and caretakers
(cf. [9], [10]). By extension, if category acquisition is under
the influence of language, it must itself be sensitive to social
interaction.

The research reported in this paper was prompted by a desire
to study new modes of learning in embodied robots. Typically,
machine learning starts by collecting a set of training exam-
ples, such as pairs of visual images and words, and proceeds
by offering this training set to a feature detector followed by
a learning algorithm. This form of machine learning, called
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supervised learning, does not involve the learner in steering
the learning experience and as such, we believe, misses out
on a fundamental property of human development. We aim to
study how robots and humans can engage in an interaction
whereby the robot learner actively steers the learning experi-
ence. The algorithms studied in this paper form the basis of
this interaction.

The paper presents a learning mechanism and three interac-
tive variations together with experimental results drawn from
simulations. The learning mechanism is based on the language
games mechanism, where teacher and learner engage in a
dyadic contextualised interaction [11], [12]. Eventually the
teaching role could be assumed by a human, and the learning
role by a robot. The model presented in this paper exists
within simulation only, the roles of both teacher and learner
are assumed by software agents. The variations on the learning
mechanism are informed by recent insights in developmental
psychology and the intuitions of the authors; more detail is
given in the following sections.

II. MODEL

A. Representation

The model we use consists of a conceptual space which
allows for a geometrical representation of conceptual knowl-
edge along various quality dimensions [13]. In a nutshell, a
conceptual space is a collection of one or more domains (like
colour or tone), where a domain is postulated as a collection
of inseparable quality dimensions with a metric. Examples
of quality dimensions are weight, temperature, brightness,
pitch, loudness and RGB1 values. For instance, to express a
colour in RGB the different quality dimensions ‘red’, ‘green’
and ‘blue’ are all necessary to express colour values and are
hence inseparable. Other domains may consist of more or just
one quality dimension. A concept can be represented as a
point in the conceptual space, where the coordinates of the
point determine the features of the concept. For example, the
concept RED is represented as a point on (255, 0, 0) in the
RGB colour domain and BLUE as a point on (0, 0, 255). In
principle any domain may be used, although for some domains
it might be easier to extract the relevant dimensions than for
others. In this research the colour domain is used as a test
case, but in CIE L*a*b* encoding because this is more in
line with how humans perceive colours [14]. Hence, a colour
stimulus consists of three values, where the L* dimension
encodes for the lightness of the colour and the a* and b*
dimensions respectively encode for a red-green and yellow-
blue dimension.

A newly observed colour stimulus can be classified as
belonging to a particular existing colour concept by calculating
the weighted distance from the stimulus to every concept
already present in the conceptual space. The observed stimulus
is then assigned to the closest existing concept. Furthermore,
the model allows for the representation of concepts through
prototypes, which enables it to display typicality effects ob-
served in human conceptualisation. Rosch [15] pointed out

1RGB is a technical colour representation suited for reproducing colour on
display devices. Red, Green and Blue values here range from 0 to 255.

that many everyday concepts are prototypical in nature, i.e.
humans regard certain instances for a specific concept to be
more typical than others. For example, for the concept BIRD,
the instance ROBIN is thought to be more bird-like than the
instance PENGUIN. Hence, it seems that specific instances
exhibit a graded membership to an idealised prototype concept.
Following Gärdenfors, in our model, a conceptual prototype
is built through the addition of exemplars (colour stimuli) for
the specific concept, where the mean values of all dimensions
encode for the coordinates of the prototype and the variance of
all exemplars determines the prototype’s size. Hence, a con-
ceptual prototype will not be an exact point in the conceptual
space, but rather define a certain convex region.

B. Lexicalisation

While the conceptual space incorporating conceptual proto-
types may stand in itself, in this work it is tightly linked to
a lexicon of linguistic labels used to describe the concepts.
The linguistic labels can potentially be stored as a string of
characters, a visual icon or an acoustic sample. Moreover,
these labels play a crucial role in the formation of new
concepts. This approach is based on the idea that language
is a prime forming factor for the acquisition of new concepts
as described in the introduction. Typically, a learning agent
is confronted with a stimulus accompanied by a linguistic
label. The stimulus is then integrated as exemplar data into the
existing conceptual knowledge represented in the conceptual
space of the agent. The accompanying label may influence
to which existing concept the new data should be assigned.
And the other way around, the meaning of the linguistic
labels can be perceptually grounded through the values of the
associated concepts. Concepts are linked with labels through
an association matrix which determines the strength of the
connection between every known concept in the conceptual
space and every label in the lexicon. Hence, when the agent
needs a label to express a specific concept or vice versa, this
can be found through consulting the association matrix. When
a new concept-label connection is added to the association
matrix, it is initiated with a default strength of 0.5. When a
connection needs to be increased or decreased (based on suc-
cess or failure of language game interaction), this is done by
increasing/decreasing the strength with 0.01 to 0.0 (minimum)
or 1.0 (maximum). Multiple concepts may be associated with
the same label.

C. Knowledge acquisition

The basic learning mechanism for concept acquisition is a
language game. This is then augmented with three different in-
teractive features, resulting in four different learning regimes.
A description of this is given:

A language game (LG) is implemented as a combination
of a discrimination game and a guessing game [12], [16].
A language game typically consist of two agents, where one
agent takes the role of teacher and the other agent acts as
learner. Different from the original language game, in our
implementation the teacher and learner do not switch roles
because we view the teacher as “all knowing”. The teacher
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has a fixed concept-label mapping and uses 11 concepts (basic
English colour names) 2. Both agents are given a set of training
stimuli, called the context, from which one specific stimulus
is assigned as topic which is known by the teacher only.
The teacher then communicates the topic to the learner by
stating its associated linguistic label. If the learner is able
to correctly identify the topic from the context through the
perceived label, the game succeeds. If the learner is not able
to correctly identify the topic, either because the label is
not known by the learner or because the learner points to
the wrong item from the context, the game fails. A failed
game provides an opportunity for the learner to improve its
conceptual and lexical knowledge. By employing a sequence
of language games, the learner is able to build a body of
knowledge containing conceptual prototypes and associated
labels.

The language game is modified to allow for more interaction
by adding features that enable the learner to actively steer
learning experience towards gaps in its knowledge and may
stimulate the formation of more robust knowledge. These
features are:

1) Active learning (AL). During a guessing game, instead
of using a randomly picked topic from the context,
the learner actively chooses the topic. This is done by
picking the stimulus from the context for which the
distance to the most nearby already learnt concepts is
the greatest. That is, the most unfamiliar stimulus is
chosen as topic3. The idea behind AL is that selecting
the most unfamiliar stimulus as the topic enables the
agent to reach far corners of the conceptual space
more quickly. By selecting the stimulus which bears the
least resemblance to already known concepts, the agent
should be able to achieve a more distributed conceptual
knowledge structure. AL could be viewed as a way of
modeling novelty preference which is typically observed
in young children.

2) Knowledge querying (KQ). After a specified number
of guessing games, the learner queries some of its
knowledge built up so far with the teacher. This is

2This is the case because we are not only interested in the dynamics of
learning concepts through language games as such, but also wish to study
mechanism of how an artificial system may learn such knowledge from a
human teacher. Indeed, the aim is to eventually implement this mechanism
onto robotic hardware which will learn concepts through interaction with
humans.

3Inspiration has been drawn from Oudeyer and Delaunay [17], which
also featured a mechanism called Active learning. The difference with our
implementation of AL and that of Oudeyer and Delaunay consists in the
fact that we aim to actively explore the far corners of the conceptual space
quickly. Hence, the aim is to enable the agent to experience unknown stimuli
and build concepts for this. Instead, in Oudeyer and Delaunay the active
selection of meaning by the agent serves as a mechanism to gradually control
the growth of different meanings and thus strive for a more robust shared
lexicon. Because the agent considers introducing a new meaning based on
certain criteria (for instance, the average success of the meanings already
in use) , this active selection can be seen as a method to consolidate the
knowledge already learnt, leading to faster convergence among the population.
This form of AL is essentially aimed at employment within a community of
agents which all interact with one another, while ours is aimed at the learning
agent only. In summary, although the term “active learning” is the same,
the actual implementation functions differently. It is called “active” because
in both cases agents are actively engaged in the dynamics that govern the
acquisition of meaning.

done by selecting the concept which has been the least
successful during previous language game interaction.
This concept is stated to the teacher, along with the
associated label. If the teacher confirms the query, i.e.
if the label of the teacher for the queried concept is
equal to the label of the learner, the strength of the
association between the label and the concept of the
learner is increased. If the query is not confirmed, this
association is weakened. With KQ we aim to implement
a common sense intuition, namely that it makes sense to
check learned information from time to time and adapt
if necessary.

3) Contrastive learning (CL). During a guessing game,
after the learner has successfully identified the topic
through the label uttered by the teacher, not only the
association between label and topic is increased, but
contrastive information is utilised as well. For each
stimulus in the context which is not the topic, the
learner finds the concept in it’s knowledge body which
is closest, and weakens the association between this
concept and the label that the teacher used to describe
the topic. This is supported by experimental results from
developmental psychology [18] and bears resemblance
to lateral inhibition [19] and lexical contrast [20].

D. Description of algorithms

Discrimination games are used by the agent to build up a
conceptual knowledge body, and guessing games are used to
assign the proper labels to the learnt concepts, with help of
the teacher.

The discrimination game is as follows:
1) Agent A is confronted with context O = {o1, ..., oN}

containing N stimuli and an index i, specifying the topic
ot.

2) A finds the best matching concept c from it’s knowl-
edge body KA for each stimulus in the context:
{o1, ..., oN} → C = {c1, ..., cN}.

3) If the best matching concept on i is unique in C the
game succeeds, otherwise it fails.

The discrimination game can fail in several ways: this is an
opportunity to improve the agents knowledge body. When
KA is empty, a new category is created on the coordinates
of ot. When no unique discriminating concepts can be found,
there are two possible actions: (1) a new concept is created
on ot, or (2) the best matching concept c is adapted to better
represent ot. This is done by shifting c towards ot. Action
(1) is taken when the discriminative success4 of the agent is
below a threshold adapt = 0.9, otherwise action (2) is taken.
In all cases the discrimination game results in A stating a
concept from KA.

4The discriminative success of an agent is the global success of the agent
of all discrimination games it has engaged in. It is measured by dividing the
number of times the agent has successfully discriminated the topic from the
context by the total number of discrimination games the agent has played.



2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 4

The guessing game is as follows:
1) Teacher AT and learner AL are confronted with context

O = {o1, ..., oN} containing N objects and the index of
the topic, specifying ot.

2) AT plays a discrimination game for ot, the discrimina-
tion game succeeds and returns the concept cT .

3) AT finds the associated label lT and communicates this
to AL.

4) AL hears lT = lL and finds the associated concept cL.
5) AL points to oL closest to cL.
6) if oL = ot, the guessing game succeeds; if not, it fails.

When the guessing game is successful, the connection strength
between lL and cL is increased and ot is added as an exemplar
of cL, effectively shifting the coordinates of cL a bit towards
ot.

The guessing game can fail in several ways. (1) The
discrimination game of AT fails; in this case the guessing
game fails as well. (2) AL does not know lT . AL then plays a
discrimination game for ot, finds cL and adds lT to it’s lexicon
with a default connection 0.5 to cL. (3) AL knows lT , but
points to the wrong topic. AL then decreases the connection
strength between lL and cL, plays a discrimination game for
ot, finds cL and adds lT to its lexicon with a default connection
0.5 to cL.

When interactive learning is used, the language game is
augmented with interactive features. These features are:

• Active learning. During the guessing game, when AL is
confronted with context O: (1) AL finds best matching
concept c in KAL for each stimulus in O: {o1, ..., oN} →
C = {c1, ..., cN}. (2) The distance between every oi and
ci is calculated and stored in D = {d1, .., dN}. (3) The
oi with the highest di is chosen as topic for the guessing
game by AL.

• Knowledge querying. After each language game the suc-
cess of the concept cL used by AL is recorded. After
a specified number of language games AL initiates a
knowledge query: (1) AL finds the concept in KAL with
the lowest success rate clow and the associated label
llow and communicates this to AT . (2) AT finds the
closest concept in KAT and the associated label lmatch.
(3) If llow = lmatch, AT answers positive, and otherwise
negative. (4) Based on the answer from AT , AL increases
or decreases the connection strength between clow and
llow.

• Contrastive learning. (1) After a successful guessing
game AL examines all objects ¬ot in the context and
finds C = {c1, ..., cN} in KAL . (2) AL decreases the
connection between lL and all objects in C.

III. RESULTS

A. Experimental setup

In each language game the context consisted of 4 stimuli,
including the topic. This context was generated by randomly
picking 4 samples from a dataset containing 25,000 pixels
drawn with uniform probability from the RGB space and
converted into CIE L*a*b* space. Between all stimuli in the
context there was a minimum distance of 50 (to give the reader

an idea of the CIE L*a*b* distance between typical colours:
green-blue is 258, red-blue is 177, yellow-blue is 232 and
yellow-green is 70). The teacher and learner engaged in 2000
language games. For all learning regimes (LG, AL, KQ and
CL) 300 replicas were run and the average correctness score
was calculated.

B. Evaluation

To evaluate the performance of the different learning
regimes, the conceptual knowledge held by the learner after
learning sessions is compared to that of the teacher. This is
done by employing a test scenario in which teacher and learner
are shown a set of 100 random stimuli5. Both teacher and
learner then state their associated label for each stimulus in
the set. If the two labels are equal, the learner has learnt the
label correctly. In this way the learner is assigned score S
which reflects the percentage of correctly learnt labels. S is
calculated as the number of stimuli correctly named by the
learner divided by the total number of stimuli in the given set.

C. Result

To compare the results of the various learning regimes the
LG learning method was used as a baseline performance.
Then the interactive features AL, KQ and CL were compared
to the baseline LG, which is shown in Figure 1, 2 and
3. Figure 4 displays the performance of the base condition
against interactive learning with all three features enabled. As
can be observed from the graphs, performance of interactive
learning is very close to that of LG learning in all cases.
CL performs slightly less, while the other learning regimes
perform somewhat better than LG. With all three interactive
features concurrently enabled, performance gain is the highest.
To determine whether or not the differences were significant,
a Welsch two sample t-test was performed (see Table I). It
turns out that in all cases except for LG vs CL the difference
in performance is small but significant. Overall it can be
observed that the learning of concepts through language game
interaction may improve somewhat when interactive features
are added; both in terms of learning speed and in terms
of final performance after learning. The performance of any
learning regime never really converges to 100% accuracy. This
is due to the fact that although the learner is generally able
to form concepts that functionally resemble the concepts of
the teacher, the boundaries of the learners’ concepts are never
exactly the same. So while testing, there will always be border
cases which the teacher may call ‘concept 1’, but the learner
‘concept 2’.

We also computed the performance of agents performing
randomly, i.e. the agent picks a random label to respond to
a stimulus. Typically, the performance of the agent is around
10% (this is proportional to inverse number of labels of the
teacher). As can be seen from the graphs, the learners quickly
perform better than random and achieve a performance of over
60% after about 100 interactions. Quite a number of concepts

5Because of running time considerations we did not use the full set of
25,000 colour samples for evaluation after each training interaction.
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the agent holds at that point will in fact be learnt after one
or two interactions only. Hence, the learning process bears
a resemblance to fast mapping in young children [21]. The
fact that the agent scores only 60% is because (1) through
random selecting the stimuli not all colour categories may be
encountered already at this point, and (2) the discrimination
game of the teacher may fail sometimes (depending on the
distance between all the stimuli in the context), rendering some
of the 100 interactions not suitable for learning.
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Fig. 1. Performance of LG vs AL. The darker (blue) line indicates LG, the
lighter (red) line indicates AL.
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Fig. 2. Performance of LG vs KQ. The darker (blue) line indicates LG, the
lighter (red) line indicates KQ.

TABLE I
TEST RESULTS

LG vs AL LG vs KQ LG vs CL LG vs all
t-test t = -2.6114 t = -2.4928 t = 1.5676 t = -7.1749

df = 597.9 df = 597.3 df = 596.9 df = 590.9
p = 0.0092 p = 0.013 p = 0.12 p < 0.0001

IV. DISCUSSION

The results show that the language game [11], [12] already
provides a good base model for acquiring categories in a
continuous semantic space. This is perhaps surprising as the
language game algorithm was designed to study diachronic
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Fig. 3. Performance of LG vs CL. The darker (blue) line indicates LG, the
lighter (red) line indicates CL.
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Fig. 4. Performance of learning with all interactive features enabled. The
darker (blue) line indicates LG, the lighter (red) line indicates learning with
interactive features.

language evolution and not to serve as a machine learning
algorithm to acquire human-like knowledge. Variations on the
language game, whereby the learner is allowed to actively steer
the learning experience, add a relatively small but nevertheless
significant improvement to the learners performance, both in
terms of speed of learning as in terms of accuracy.

When teaching categories and associated labels to an au-
tonomous agent, such as a robot or software agent, one of the
most efficient learning methods remains direct instruction. In
this form of instruction prototypes and associated labels are
offered to the learner. Several learning algorithms are able to
absorb these training examples immediately and the learner
will as such, after a limited number of training examples,
faithfully reproduce the teacher’s categories and labels. While
this might be desirable, this learning method is unrealistic
for a number of reasons. One is that children and caretakers
do not generally seem to use direct instruction, even though
children can learn from direct instruction as evidenced by [3].
Their experimental setup however, was not exactly a natural
learning setting. Also, learning proper names is usually a
one-shot learning experience. However, generally acquiring
a category and label requires repeated exposure to different
examples of the category together with its label. In some
cases learning categories and labels seems inexplicably hard
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for children: colour category and colour word learning evolve
slowly; even though children are exposed to unambiguous
learning experiences on a daily and frequent basis, it takes
on average two to three years before basic colour categories
and words are correctly learnt [22], [23]. A second reason
for not only implementing direct instruction is that caretakers
rather use a blend of instruction methods and young children
subsequently use a range of learning methods to handle this
mixed mode of instruction. A third reason is that learning
examples are not always available: when children learn about
trees, a prototypical tree is not always readily available. Rather,
the concept of tree is gradually constructed from numerous
examples of tree seen from different angles, at different stages
of growth and in different seasons. Children already use
incomplete concepts, both linguistically and non-linguistically,
and use the implicit and explicit feedback they receive to
refine, limit or extend concepts. A fourth and final reason
is related to human-machine interaction: the intent of this
research is to explore novel learning methods to allow artificial
agents to acquire a repertoire of concepts and language through
long-term natural interaction with people. Direct instruction is
not compatible with this goal.

This research ties in with a larger project, in which it is
studied how robots can learn concepts from humans through a
natural interaction scheme6. Emphasis is both on how human-
robot interaction can effectively facilitate the learning process,
and on the actual learning algorithms that need to be deployed
by the robot in order to properly learn and represent concepts.
Language is considered to be crucial for this. Future research
will look at how hierarchical structures can be supported
within the conceptual space of a robot and explore methods
to transfer conceptual knowledge from one robot to another.
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