Computational implications of the muscle synergy hypothesis

Cristiano Alessandro
Department of Informatics
University of Zurich

Juan Pablo Carbajal
Department of Electronics and Information Systems
University of Zürich

Andrea d’Avella
Laboratory of Neuromotor Physiology
Ghent University

Francesco Nori
Robotics, Brain and Cognitive Science
Istituto Italiano di Tecnologia

Introduction
A prominent hypothesis in motor neuroscience suggests that the central nervous system generates desired muscle activations by combining a parsimonious set of predefined primitives called synergies. Our work investigates the implications of this organization by considering the problem of controlling a simulated mechanical system in accordance with the model of time-varying synergies.

What can we learn from robotics?
In robotics synergies are synthesized (C) based on the requirements of the desired class of tasks (A). They are then used to generate appropriate control signals (B). The quality of the synthesized synergies is finally tested in terms of the obtained task performance (A).

In neuroscience the "muscle synergy hypothesis" is often evaluated by decomposing (C) a dataset of EMG signals (B) extracted during the execution of various tasks (A). Since the musculoskeletal system is non-linear, there is no guarantee that combinations of the extracted synergies lead to the observed task performance. A task-based assessment (dashed green line) is necessary.

What can we learn from robotics?
In robotics synergies are synthesized (C) based on the requirements of the desired class of tasks (A). They are then used to generate appropriate control signals (B). The quality of the synthesized synergies is finally tested in terms of the obtained task performance (A).

In neuroscience the "muscle synergy hypothesis" is often evaluated by decomposing (C) a dataset of EMG signals (B) extracted during the execution of various tasks (A). Since the musculoskeletal system is non-linear, there is no guarantee that combinations of the extracted synergies lead to the observed task performance. A task-based assessment (dashed green line) is necessary.

What can we learn from robotics?
In robotics synergies are synthesized (C) based on the requirements of the desired class of tasks (A). They are then used to generate appropriate control signals (B). The quality of the synthesized synergies is finally tested in terms of the obtained task performance (A).

In neuroscience the "muscle synergy hypothesis" is often evaluated by decomposing (C) a dataset of EMG signals (B) extracted during the execution of various tasks (A). Since the musculoskeletal system is non-linear, there is no guarantee that combinations of the extracted synergies lead to the observed task performance. A task-based assessment (dashed green line) is necessary.

What can we learn from robotics?
In robotics synergies are synthesized (C) based on the requirements of the desired class of tasks (A). They are then used to generate appropriate control signals (B). The quality of the synthesized synergies is finally tested in terms of the obtained task performance (A).

In neuroscience the "muscle synergy hypothesis" is often evaluated by decomposing (C) a dataset of EMG signals (B) extracted during the execution of various tasks (A). Since the musculoskeletal system is non-linear, there is no guarantee that combinations of the extracted synergies lead to the observed task performance. A task-based assessment (dashed green line) is necessary.

What can we learn from robotics?
In robotics synergies are synthesized (C) based on the requirements of the desired class of tasks (A). They are then used to generate appropriate control signals (B). The quality of the synthesized synergies is finally tested in terms of the obtained task performance (A).

In neuroscience the "muscle synergy hypothesis" is often evaluated by decomposing (C) a dataset of EMG signals (B) extracted during the execution of various tasks (A). Since the musculoskeletal system is non-linear, there is no guarantee that combinations of the extracted synergies lead to the observed task performance. A task-based assessment (dashed green line) is necessary.

What can we learn from robotics?
In robotics synergies are synthesized (C) based on the requirements of the desired class of tasks (A). They are then used to generate appropriate control signals (B). The quality of the synthesized synergies is finally tested in terms of the obtained task performance (A).

In neuroscience the "muscle synergy hypothesis" is often evaluated by decomposing (C) a dataset of EMG signals (B) extracted during the execution of various tasks (A). Since the musculoskeletal system is non-linear, there is no guarantee that combinations of the extracted synergies lead to the observed task performance. A task-based assessment (dashed green line) is necessary.

What can we learn from robotics?
In robotics synergies are synthesized (C) based on the requirements of the desired class of tasks (A). They are then used to generate appropriate control signals (B). The quality of the synthesized synergies is finally tested in terms of the obtained task performance (A).

In neuroscience the "muscle synergy hypothesis" is often evaluated by decomposing (C) a dataset of EMG signals (B) extracted during the execution of various tasks (A). Since the musculoskeletal system is non-linear, there is no guarantee that combinations of the extracted synergies lead to the observed task performance. A task-based assessment (dashed green line) is necessary.

What can we learn from robotics?
In robotics synergies are synthesized (C) based on the requirements of the desired class of tasks (A). They are then used to generate appropriate control signals (B). The quality of the synthesized synergies is finally tested in terms of the obtained task performance (A).

In neuroscience the "muscle synergy hypothesis" is often evaluated by decomposing (C) a dataset of EMG signals (B) extracted during the execution of various tasks (A). Since the musculoskeletal system is non-linear, there is no guarantee that combinations of the extracted synergies lead to the observed task performance. A task-based assessment (dashed green line) is necessary.

What can we learn from robotics?
In robotics synergies are synthesized (C) based on the requirements of the desired class of tasks (A). They are then used to generate appropriate control signals (B). The quality of the synthesized synergies is finally tested in terms of the obtained task performance (A).

In neuroscience the "muscle synergy hypothesis" is often evaluated by decomposing (C) a dataset of EMG signals (B) extracted during the execution of various tasks (A). Since the musculoskeletal system is non-linear, there is no guarantee that combinations of the extracted synergies lead to the observed task performance. A task-based assessment (dashed green line) is necessary.