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Abstract. Taking inspiration from the hypothesis of muscle synergies,
we propose a method to generate open loop controllers for an agent solv-
ing point-to-point reaching tasks. The controller output is defined as a
linear combination of a small set of predefined actuations, termed syner-
gies. The method can be interpreted from a developmental perspective,
since it allows the agent to autonomously synthesize and adapt an effec-
tive set of synergies to new behavioral needs. This scheme greatly reduces
the dimensionality of the control problem, while keeping a good perfor-
mance level. The framework is evaluated in a planar kinematic chain,
and the quality of the solutions is quantified in several scenarios.
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1 Introduction
Humans are able to perform a wide variety of tasks with great flexibility; learning
new motions is relatively easy, and adapting to new situations (e.g. change in
the environment or body growth) is usually dealt with no particular effort. The
strategies adopted by the central nervous system (CNS) to master the complexity
of the musculoskeletal apparatus and provide such performance are still not clear.
However, it has been speculated that an underlying modular organization of the
CNS may simplify the control and provide the observed adaptability. There
is evidence that the muscle activity necessary to perform various tasks (e.g.
running, walking, keeping balance, reaching and other combined movements)
may emerge from the combination of predefined muscle patterns, the so-called
muscle synergies [1]. This organization seems to explain muscle activity across
a wide range of combined movements [2–4].

The scheme of muscle synergies is inherently flexible and adaptable. Differ-
ent actions are encoded by specific combinations of a small number of predefined
synergies; this reduces the computational effort and the time required to learn
new useful behaviors. The learning scheme can be regarded as developmental
since information previously acquired (i.e. synergies) can be reused to gener-
ate new behaviors[5]. Finally, improved performance can be easily achieved by
introducing additional synergies. Thus, the hypothetical scheme of muscle syner-
gies would contribute to the autonomy and the flexibility observed in biological



systems, and it could inspire new methods to endow artificial agents with such
desirable features.

In this paper we propose a method to control a dynamical system (i.e. the
agent) in point-to-point reaching tasks by linear combinations of a small set of
predefined actuations (i.e. synergies). Our method initially solves the task in
state variables by interpolation; then, it identifies the combination of synergies
(i.e. actuation) that generate the closest kinematic trajectory to the computed
interpolant. Additionally, we propose a strategy to synthesize a small set of
synergies that is tailored to the task and the agent. The overall method can be
interpreted in a developmental fashion; i.e. it allows the agent to autonomously
synthesize and update its own synergies to increase the performance of new
reaching tasks.

Other researchers in robotics and control engineering have recently proposed
architectures inspired by the concept of muscle synergies. In [6] the authors de-
rive an analytical form of a set of primitives that can drive a feedback linearized
system (known analytically) to any point of its configuration space. In [7] the
authors present a numerical method to identify synergies that optimally drive
the system over a set of desired trajectories. This method does not require an
analytical description of the system, and it has the advantage of assessing the
quality of the synergies in task space. However, it is computationally expensive
as it involves heavy optimizations. In [8] muscle synergies are identified by ap-
plying an unsupervised learning procedure to a collection of sensory-motor data
obtained by actuating a robot with random signals. In [9] the architecture of the
dynamic movement primitives (DMP) is proposed as a novel tool to formalize
control policies in terms of predefined differential equations. Linear combinations
of Gaussian functions are used as inputs to modify the attractor landscapes of
these equations, and to obtain the desired control policy.

In contrast to these works, our method to synthesize synergies does not rely
on feedback linearization, nor on repeated integrations of the dynamical system.
The method is grounded on the input-output relation of the dynamical system
(as in [8]), and it provides a computationally fast method to obtain the synergy
combinators to solve a given task. Furthermore, our method is inherently adapt-
able as it allows the on-line modification of the set of synergies to accommodate
to new reaching tasks.

2 Definitions and Methods

In this section we introduce the mathematical details of the method we propose.
After some definitions, we present the core element of our method: a general
procedure to compute actuations that solve point-to-point reaching tasks (see
Sec. 2.1). Subsequently, in Section 2.2, we propose a framework for the synthesis
and the development of a set of synergies.

Let us consider a differential equation modeling a physical system
D (q(t)) = u(t), where q(t) represents the time-evolution of its configuration
variables (their derivatives with respect to time are q̇(t)), and u(t) is the actu-



ation applied. Inspired by the hypothesis of muscle synergies3 [1], we formulate
the actuation as a linear combination of predefined motor co-activation patterns:

u(t) =
Nφ∑
i=1

φi(t)bi := Φ(t)b, (1)

where the functions φi(t) ∈ Φ are called motor synergies. The notation Φ(t)
describes a formal matrix where each column is a different synergy. If we consider
a time discretization, Φ(t) becomes a N dim(q)-by-Nφ matrix, where N is the
number of time steps, dim(q) the dimension of the configuration space and Nφ
the number of synergies.

We define dynamic responses (DR) of the set of synergies as the responses
θi(t) ∈ Θ of the system to each synergy (i.e. forward dynamics):

D(θi(t)) = φi(t) i = 1...Nφ. (2)

with initial conditions chosen arbitrarily.
2.1 Solution to point-to-point reaching tasks
A general point-to-point reaching task consists in reaching a final state (qT , q̇T )
from an initial state (q0, q̇0) in a given amount of time T :

q(0) = q0, q̇(0) = q̇0,

q(T ) = qT , q̇(T ) = q̇T .
(3)

Controlling a system to perform such tasks amounts to finding the actuation u(t)
that fulfills the point constraints4 (4). Specifically, assuming that the synergies
are known, the goal is to identify the appropriate synergy combinators b. In this
paper we consider only the subclass of reaching tasks that impose motionless
initial and final postures, i.e. q̇T = q̇0 = 0.

The procedure consists of, first, solving the problem in kinematic space (i.e.
finding the appropriate q(t)), and then computing the corresponding actuations.
From the kinematic point of view, the task can be seen as an interpolation
problem; i.e. q(t) is a function that interpolates the data in (4). Therefore, a set
of functions is used to build the interpolant trajectory that satisfy the constraints
imposed by the task; these functions are herein the dynamic responses of the
synergies:

q(t) =
Nθ∑
i=1

θi(t)ai := Θ(t)a, (4)

where the vector of combinators a is chosen such that the task is solved. As
mentioned earlier, if time is discretized, Θ(t) becomes a N dim(q)-by-Nθ ma-
trix, where Nθ is the number of dynamic responses. The quality of the DR as
interpolants is evaluated in sections 3.
3 With respect to the model of time-varying synergies, in this paper we neglect the
synergy onset times.

4 In this paper we assume that the initial conditions of the systems are equal to (q0, q̇0)



Once a kinematic solution has been found (as linear combination of DRs), the
corresponding actuation can be obtained by applying the differential operator;
i.e. D (Θ(t)a) = ũ(t). Finally, the vector b can be computed by projecting ũ(t)
onto the synergy set Φ. If ũ(t) does not belong to the linear span of Φ, the
solution can only be approximated in terms of a defined norm (e.g. Euclidean):

b = arg min
b
||ũ(t)−Φ(t)b||. (5)

When the time is discretized, all functions of time becomes vectors and this
equation can be solved explicitly using the psuedoinverse of the matrix Φ,

Φ+ũ = Φ+D (Θa) = b. (6)

This equation highlights the operator Φ+ ◦ D ◦Θ (◦ denotes operator composi-
tion) as the mapping between the kinematic combinators a (kinematic solution)
and the synergy combinators b (dynamic solution). Generically, this operator
represents a nonlinear mapping M : RNθ → RNφ , and it will be discussed in
Section 4.
To assess the quality of the solution we define the following measures:
Interpolation error: Measures the quality of the interpolant Θ(t)a with respect
to the task. Strictly speaking, only the case of negligible errors corresponds to
interpolation. A non-zero error indicates that the trajectory Θ(t)a only approx-
imates the task

errI =
√
||qT −Θ(T )a||2 + ||Θ̇(T )a||2, (7)

where ||· || denotes the Euclidean norm, and the difference between angles are
mapped to the interval (−π, π].
Projection error: Measures the distance between the actuation that solves the
task ũ(t), and the linear span of the synergy set Φ

errP =

√∫ T

0
||ũ(t)−Φ(t)b||2dt. (8)

Forward dynamics error: Measures the error of a trajectory q̃(t,λ) generated by
an actuation Φ(t)λ, in relation to the task.

errF =
√
||q̃(T,λ)− qT ||2 + || ˙̃q(T,λ)− q̇T ||2. (9)

Replacing q̃(t,λ), qT and q̇T with their corresponding end-effector values pro-
vides the forward dynamics error of the end-effector.
2.2 Synthesis and Development of Synergies
The synthesis of synergies is carried on in two phases: exploration and reduction.
The exploration phase consists in actuating the system with an extensive set of
motor signals Φ0 in order to obtain the corresponding DRs Θ0. The reduction



phase consists in solving a small number of point-to-point reaching tasks in
kinematic space (that we call proto-tasks) by creating the interpolants using the
elements of set Θ0, as described in Eq. (5). These solutions are then taken as
the elements of the reduced set Θ. Finally, the synergy set Φ is computed using
relation (3), i.e. inverse dynamics. As a result, there will be as many synergies as
the number of the proto-tasks (i.e.Nφ = Nθ). The intuition behind this reduction
is that the synergies that solve the proto-tasks may capture essential features
both of the task and of the dynamics of the system. Despite the non-linearities of
D, linear combination of these synergies might be useful to solve point-to-point
reaching tasks that are similar (in terms of Eq. (4)) to the proto-tasks (see Sec.
3).

The number of proto-tasks as well as their specific instances determine the
quality of the synergy-based controller. To obtain good performance in a wide
variety of point-to-point reaching tasks, the proto-tasks should cover relevant re-
gions of the state space (see Sec. 3). Clearly, the higher the number of different
proto-tasks, the more regions that can be reached with good performance. How-
ever, a large number of proto-tasks (and the corresponding synergies) increases
the dimensionality of the controller. In order to tackle this trade-off, we propose
a procedure that parsimoniously adds a new proto-task only when and where it
is needed: if the performance in a new reaching task is not satisfactory, we add a
new proto-task in one of the regions with highest projection error or we modify
existing ones.

3 Results
We apply the methodology described in Section 2 to a simulated planar kinematic
chain (see [10] for model details) modeling a human arm[11]. In the exploration
phase, we employ an extensive set of motor signals Φ0 to actuate the arm model
and generate the corresponding dynamic responses Θ0. The panels in the first
row of Fig. 1 show the end-effector trajectories resulting from the exploration
phase. We test two different classes of motor signals: actuations that generate
minimum jerk end-effector trajectories (100 signals), and low-passed uniformly
random signals (90 signals). In order to evaluate the validity of the general
method described in Sec. 2.1, we use the sets Φ0 and Θ0 to solve 13 different
reaching tasks without performing the reduction phase. The second row of Fig.
1 depicts the trajectories drawn by the end-effector when the computed mixture
of synergies are applied as actuations (i.e. forward dynamics of the solution). It
has to be noted how the nature of the solutions (as well as that of the responses),
depends on the class of actuations used. The maximum errors are reported in
Table 1. The results are highly satisfactory for both the classes of actuations,
and show the validity of the method proposed. Since the reduction phase has
not been performed, the dimension of the combinator vectors a and b equals the
number of actuations used in the exploration.

The objective of the reduction phase is to generate a small set of synergies
and DRs that can solve desired reaching tasks effectively. As described in Sec-
tion 2.2, this is done by solving a handful of proto-tasks. The number (and the
instances) of these proto-tasks determines the quality of the controller. Figure



Min. Jerk Random
errI 10−15 10−15

errP 10−5 10−3

errF 10−4 10−3

Table 1. Order of the maximum errors obtained by using Φ0 and Θ0 (no reduction
phase).

2 shows the projection error as a function of the number of proto-tasks. The
reduction is applied to the low-passed random signal set. Initially, two targets
are chosen randomly (top left panel); subsequent targets are then added on the
regions characterized by higher projection error. As it can be seen, the intro-
duction of new proto-tasks leads to better performance on wider regions of the
end-effector space, and eventually the whole space can be reached with reason-
able errors. In fact, the figure shows that this procedure decreases the average
projection error to 10−3 (comparable to the performance of the whole set Φ0, see
Tab. 1) and reduces the dimension of the combinator vector to 6, a fifteen-fold
reduction. This result shows that a set of “good” synergies can drastically reduce
the dimensionality of the controller, while maintaining similar performance. The
bottom right panel of the figure shows the forward dynamics error of the end-
effector obtained with the 6 proto-tasks. Comparing this panel with the bottom
left one, it can be seen that the forward dynamics error of the end-effector re-
produces the distribution of the projection error, rendering the latter a good
estimate for task performance.

To further demonstrate that the reduction phase we propose is not trivial,
we compare the errors resulting from the set of 6 synthesized synergies, with the
errors corresponding to 100 random subsets of size 6 drawn from the set of low-
passed random motor signals. Figure 3 shows this comparison. The task consists
in reaching the 13 targets in Fig. 1. The boxplots correspond to the errors of
the random subsets, and the filled circles to the errors of the synergies resulting
from the reduction phase. Observe that, the order of the error of the reduced
set is, in the worst case, equal to error of the best random subset. However, the
mean error of the reduced set is about 2 orders of magnitude lower. Therefore,
the reduction by proto-tasks can produce a parsimonious set of synergies out of
a extensive set of actuations. Evaluating the performance with different classes
of proto-tasks (e.g. catching, hitting, via-points) is postponed to future works.

4 Discussion
The results shown in the previous section justify the interpretation of the method-
ology as a developmental framework. Initially, the agent explores its sensory-
motor system employing a variety of actuations. Later, it attempts to solve the
first reaching tasks (proto-tasks), perhaps obtaining weak performance as the
exploration phase may not have produced enough responses yet (see the box-
plots in Fig. 3). If the agent finds an acceptable solution to a proto-task, it is
used to generate a new synergy (populating the set Φ), otherwise it continues
with the exploration. The failure to solve tasks of importance for its survival,
could motivate the agent to include additional proto-tasks; Figure 2 illustrates
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Fig. 1. Comparison of explorations with two different classes of actuation: minimum
jerk and low-passed random signal. Each panel shows the kinematic chain in it initial
posture (straight segments). The limits of the end-effector are shown as the boundary
in solid line.
this mechanism. As it can be seen, the development of the synergy set incre-
mentally improves the ability of the agent to perform point-to-point reaching.
Alternatively, existing proto-tasks could be modified by means of a gradient de-
scent or other learning algorithms. In a nutshell, the methodology we propose
endows the agent with the ability to autonomously generate and update a set of
synergies (and dynamic responses) that solve reaching tasks effectively.

Despite the difficulty of the mathematical problem (i.e nonlinear differential
operator), our method seems to generate a small set of synergies that span the
space of actuations required to solve reaching tasks. This is not a trivial result,
since these synergies over-perform many other set of synergies randomly taken
from the set Φ0 (see Fig. 3). It appears as if the reduction phase builds features
upon the exploration phase, that are necessary to solve new reaching tasks. To
verify whether solving proto-tasks plays a fundamental role, our synergies could
be compared with the principal components extracted from the exploration set.
This verification goes beyond the scope of this paper.

An important aspect of our method is the relation between Θ and Φ (see
Eq. (3)). This mapping makes explicit use of the body parameters (embedded in
the differential operator D), hence the synergies obtained can always be realized
as actuations. The same cannot be said, in general, for synergies identified from
numerical analyses of biomechanical data. Though some studies have verified the
feasibility of extracted synergies as actuations [12], biomechanical constraints
are not explicitly included in the extraction algorithms. Additionally, Eq. (3)
provides an automatic way to cope with smooth variations of the morphology
of the agent. That is, both the synergies and their dynamic responses evolve
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produced to reach a target in that position. The bottom right diagram shows the
forward dynamics error of the end-effector using 6 proto-tasks (6 synergies).
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together with the body. In line with [6, 7], these observations highlight the
importance of the body in the hypothetical modularization of the CNS.

Once the task is solved in kinematic space, the corresponding actuation can
be computed using the explicit inverse dynamical model of the system (i.e. the
differential operator D). It might appear that there is no particular advantage in
projecting this solution onto the synergy set. However, the differential operator
might be unknown. In this case, a synergy-based controller would allow to com-
pute the appropriate actuation by evaluating the mappingM on the vector a,
hence obtaining the synergy combinators b. SinceM is a mapping between two
finite low-dimensional vector spaces, estimating this map may turn to be easier
than estimating the differential operator D. Furthermore, we believe that the
explicit use of D may harm the biological plausibility of our method. In order to
estimate the map M, the input-output data generated during the exploration
phase (i.e. Φ0 and Θ0) could be used as learning data-set. Further work is re-
quired to test these ideas. Additionally, preliminary theoretical considerations
(not reported here) indicate that the synthesis of synergies without the explicit
knowledge of D is also feasible.

Finally, the current formulation of the method does not includes joint limits
explicitly. The interpolated trajectories are valid, i.e. they do not go beyond
the limits, due to the lack of intricacy of the boundaries. In higher dimensions,
especially when configuration space and end-effector are not mapped one-to-one,
this may not be the case anymore. Nevertheless, joint limits can be included by
reformulating the interpolation as a constrained minimization problem. Another
solution might be the creation of proto-tasks with a tree-topology, relating our
method to tree based path planning algorithms[13].

5 Conclusion and Future Work
The current work introduces a simple framework for the generation of open loop
controllers based on synergies. The framework is applied to a planar kinematic
chain to solve point-to-point reaching tasks. Synergies synthesized during the
reduction phase over-perform hundreds of arbitrary choices of basic controllers
taken from the exploration motor signals. Furthermore, our results confirm that
the introduction of new synergies increases the performance of reaching tasks.
Overall, this shows that our method is able to generate effective synergies, greatly
reducing the dimensionality of the problem, while keeping a good performance
level. Additionally, the methodology offers a developmental interpretation of the
emergence of task-related synergies that could be validated experimentally.

Due to the nonlinear nature of the operator D, the theoretical grounding of
the method poses a difficult challenge, and it is the focus of our current research.
Another interesting line of investigation is the validation of our method against
biological data, paving the way towards a predictive model for the hypothesis
of muscle synergies. Similarly, the development of an automatic estimation pro-
cess for the mappingM would further increase the biological plausibility of the
model.

The inclusion of joint limits into the current formulation must be prioritized.
Solving this problem will allow to test the method on higher dimensional redun-



dant systems. Tree-based path planning algorithms may offer a computationally
effective way to approach the issue.
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